First-principles quantum dynamical theory for the dissociative chemisorption of H2O on rigid Cu(111)
نویسندگان
چکیده
Despite significant progress made in the past decades, it remains extremely challenging to investigate the dissociative chemisorption dynamics of molecular species on surfaces at a full-dimensional quantum mechanical level, in particular for polyatomic-surface reactions. Here we report, to the best of our knowledge, the first full-dimensional quantum dynamics study for the dissociative chemisorption of H2O on rigid Cu(111) with all the nine molecular degrees of freedom fully coupled, based on an accurate full-dimensional potential energy surface. The full-dimensional quantum mechanical reactivity provides the dynamics features with the highest accuracy, revealing that the excitations in vibrational modes of H2O are more efficacious than increasing the translational energy in promoting the reaction. The enhancement of the excitation in asymmetric stretch is the largest, but that of symmetric stretch becomes comparable at very low energies. The full-dimensional characterization also allows the investigation of the validity of previous reduced-dimensional and approximate dynamical models.
منابع مشابه
Supplementary Information A seven-dimensional quantum dynamics study of the dissociative chemisorption of H2O on Cu(111): Effects of azimuthal angles and azimuthal angle-averaging
متن کامل
A seven-dimensional quantum dynamics study of the dissociative chemisorption of H2O on Cu(111): effects of azimuthal angles and azimuthal angle-averaging
We report the first seven-dimensional quantum dynamics study for the dissociative chemisorption of H2O on Cu(111) using the time-dependent wave-packet approach, based on an accurate nine-dimensional potential energy surface (PES), which is newly developed by neural network fitting to 80 000 density functional theory points. This seven-dimensional quantum model allows the examination of the infl...
متن کاملA First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery
First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...
متن کاملSix-Dimensional Quantum Dynamics of Dissociative Chemisorption
Six-dimensional quantum dynamics calculations are now possible for fully activated dissociative chemisorption of H 2. We present results for the reaction of (y 0, j 0) H 2 on Cu(100). The potential energy surface was taken from density functional theory (DFT), using the generalized gradient approximation. Comparison to experiment suggests that, on average, the DFT method overestimates the b...
متن کاملMicrocanonical transition state theory for activated gas-surface reaction dynamics: application to H2/CU(111) with rotation as a spectator.
A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016